Abstract
Current psychological research on causal inference is dominated by two basic approaches: the covariation approach and the mechanism approach. This article reviews these two approaches, evaluates the contributions and limitations of each approach, and suggests how these approaches might be integrated into a more comprehensive framework. Covariation theorists assume that cognizers infer causal relations from conditional probabilities computed over samples of multiple events, but they do not provide an adequate account of how cognizers constrain their search for candidate causes and relevant evidence. Mechanism theorists assume that cognizers use their knowledge of potential mechanisms to infer the causes of individual events, but they do not account for the origins of this kind of knowledge. Theorists might integrate these approaches into a framework that overcomes these limitations by (1) examining important relations between cognizers' beliefs about the nature of causality, the logic of causal inference, and the processes cognizers use to make causal inferences, and (2) providing a more complete account of cognizers' conceptions of causality and the origins of those conceptions.