Abstract
This is the second in a series of three papers that charts the history of the Lenz–Ising model (commonly called just the Ising model in the physics literature) in considerable detail, from its invention in the early 1920s to its recognition as an important tool in the study of phase transitions by the late 1960s. By focusing on the development in physicists’ perception of the model’s ability to yield physical insight—in contrast to the more technical perspective in previous historical accounts, for example, Brush (Rev Modern Phys 39: 883–893, 1967) and Hoddeson et al. (Out of the Crystal Maze. Chapters from the History of Solid-State Physics. Oxford University Press, New York, pp. 489–616, 1992)—the series aims to cover and explain in depth why this model went from relative obscurity to a prominent position in modern physics, and to examine the consequences of this change. In the present paper, which is self-contained, I deal with the development from the early 1950s to the 1960s and document that this period witnessed a major change in the perception of the model: In the 1950s it was not in the cards that the model was to become a pivotal tool of theoretical physics in the following decade. In fact, I show, based upon recollections and research papers, that many of the physicists in the 1950s interested in understanding phase transitions saw the model as irrelevant for this endeavor because it oversimplifies the nature of the microscopic constituents of the physical systems exhibiting phase transitions. However, one group, Cyril Domb’s in London, held a more positive view during this decade. To bring out the basis for their view, I analyze in detail their motivation and work. In the last part of the paper I document that the model was seen as much more physically relevant in the early 1960s and examine the development that led to this change in perception. I argue that the main factor behind the change was the realization of the surprising and striking agreement between aspects of the model, notably its critical behavior, and empirical features of the physical phenomena.