On self‐distributive weak Heyting algebras

Mathematical Logic Quarterly 69 (2):192-206 (2023)
  Copy   BIBTEX

Abstract

We use the left self‐distributive axiom to introduce and study a special class of weak Heyting algebras, called self‐distributive weak Heyting algebras (SDWH‐algebras). We present some useful properties of SDWH‐algebras and obtain some equivalent conditions of them. A characteristic of SDWH‐algebras of orders 3 and 4 is given. Finally, we study the relation between the variety of SDWH‐algebras and some of the known subvarieties of weak Heyting algebras such as the variety of Heyting algebras, the variety of basic algebras, the variety of subresiduated lattices, the variety of reflexive WH‐algebras (RWH‐algebras), and the variety of transitive WH‐algebras (TWH‐algebras).

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,809

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2023-08-17

Downloads
25 (#877,287)

6 months
4 (#1,246,333)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Basic Propositional Calculus I.Mohammad Ardeshir & Wim Ruitenburg - 1998 - Mathematical Logic Quarterly 44 (3):317-343.
Bounded distributive lattices with strict implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
A Closer Look at Some Subintuitionistic Logics.Ramon Jansana & Sergio Celani - 2001 - Notre Dame Journal of Formal Logic 42 (4):225-255.
Logics Which Are Characterized by Subresiduated Lattices.George Epstein & Alfred Horn - 1976 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 22 (1):199-210.

View all 11 references / Add more references