Priestley Duality for Paraconsistent Nelson’s Logic

Studia Logica 96 (1):65-93 (2010)
  Copy   BIBTEX

Abstract

The variety of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}N4{{\bf N4}^\perp}\end{document}-lattices provides an algebraic semantics for the logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}N4{{\bf N4}^\perp}\end{document}, a version of Nelson’s logic combining paraconsistent strong negation and explosive intuitionistic negation. In this paper we construct the Priestley duality for the category of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}N4{{\bf N4}^\perp}\end{document}-lattices and their homomorphisms. The obtained duality naturally extends the Priestley duality for Nelson algebras constructed by R. Cignoli and A. Sendlewski.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour, Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.

Analytics

Added to PP
2013-09-30

Downloads
90 (#250,186)

6 months
13 (#259,115)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Dualities for modal N4-lattices.R. Jansana & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (4):608-637.
Priestley Duality for Bilattices.A. Jung & U. Rivieccio - 2012 - Studia Logica 100 (1-2):223-252.

Add more citations

References found in this work

Constructible falsity.David Nelson - 1949 - Journal of Symbolic Logic 14 (1):16-26.
Constructive Negations and Paraconsistency.Sergei Odintsov - 2008 - Dordrecht, Netherland: Springer.
The theory of Representations for Boolean Algebras.M. H. Stone - 1936 - Journal of Symbolic Logic 1 (3):118-119.
On extensions of intermediate logics by strong negation.Marcus Kracht - 1998 - Journal of Philosophical Logic 27 (1):49-73.

View all 9 references / Add more references