Abstract
The starting point of this paper is the empirically determined ability to reason in natural language by employing probable sentences. A sentence is understood to be logically probable if its schema, expressed as a formula in the language of classical propositional calculus, takes the logical value of truth for the majority of Boolean valuations, i.e., as a logically probable formula. Then, the formal system P is developed to encode the set of these logically probable formulas. Based on natural semantics, a strong completeness theorem for P is proved. Alternative notions of consequence for logically probable sentences are also considered.