Weighted Constraints in Generative Linguistics

Cognitive Science 33 (6):999-1035 (2009)
  Copy   BIBTEX

Abstract

Harmonic Grammar (HG) and Optimality Theory (OT) are closely related formal frameworks for the study of language. In both, the structure of a given language is determined by the relative strengths of a set of constraints. They differ in how these strengths are represented: as numerical weights (HG) or as ranks (OT). Weighted constraints have advantages for the construction of accounts of language learning and other cognitive processes, partly because they allow for the adaptation of connectionist and statistical models. HG has been little studied in generative linguistics, however, largely due to influential claims that weighted constraints make incorrect predictions about the typology of natural languages, predictions that are not shared by the more popular OT. This paper makes the case that HG is in fact a promising framework for typological research, and reviews and extends the existing arguments for weighted over ranked constraints.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,063

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-21

Downloads
46 (#474,008)

6 months
10 (#379,980)

Historical graph of downloads
How can I increase my downloads?