Abstract
Although emotion is closely associated with motivation, and interacts with perception, cognition, and action, many conceptualizations still treat emotion as separate from these domains. Here, a comparative/evolutionary anatomy framework is presented to motivate the idea that long-range, distributed circuits involving the midbrain, thalamus, and forebrain are central to emotional processing. It is proposed that emotion can be understood in terms of large-scale network interactions spanning the neuroaxis that form “functionally integrated systems.” At the broadest level, the argument is made that we need to move beyond a Newtonian view of causation to one involving complex systems where bidirectional influences and nonlinearities abound. Therefore, understanding interactions between subsystems and signal integration becomes central to unraveling the organization of the emotional brain.