Selective and Ramsey Ultrafilters on G-spaces

Notre Dame Journal of Formal Logic 58 (3):453-459 (2017)
  Copy   BIBTEX

Abstract

Let G be a group, and let X be an infinite transitive G-space. A free ultrafilter U on X is called G-selective if, for any G-invariant partition P of X, either one cell of P is a member of U, or there is a member of U which meets each cell of P in at most one point. We show that in ZFC with no additional set-theoretical assumptions there exists a G-selective ultrafilter on X. We describe all G-spaces X such that each free ultrafilter on X is G-selective, and we prove that a free ultrafilter U on ω is selective if and only if U is G-selective with respect to the action of any countable group G of permutations of ω. A free ultrafilter U on X is called G-Ramsey if, for any G-invariant coloring χ:[X]2→{0,1}, there is U∈U such that [U]2 is χ-monochromatic. We show that each G-Ramsey ultrafilter on X is G-selective. Additional theorems give a lot of examples of ultrafilters on Z that are Z-selective but not Z-Ramsey.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 104,706

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2017-04-19

Downloads
107 (#210,081)

6 months
12 (#294,090)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references