Abstract
This research article revisits Hempel’s logic of confirmation in light of recent developments in categorical proof theory. While Hempel advocated several logical conditions in favor of a purely syntactical definition of a general non-quantitative concept of confirmation, we show how these criteria can be associated to specific logical properties of monoidal modal deductive systems. In addition, we show that many problems in confirmation logic, such as the tacked disjunction, the problem of weakening with background knowledge and the problem of irrelevant conjunction, are also associated with specific logical properties and, incidentally, with some of Hempel’s logical conditions of adequacy. We discuss the raven paradox together with further objections against Hempel’s approach, showing how our analysis enables a clear understanding of the relationships between Hempel’s conditions, the problems in confirmation logic, and the properties of deductive systems.