Positive primitive formulae of modules over rings of semi-algebraic functions on a curve

Archive for Mathematical Logic 54 (5-6):587-614 (2015)
  Copy   BIBTEX

Abstract

Let R be a real closed field, and X⊆Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\subseteq R^m}$$\end{document} semi-algebraic and 1-dimensional. We consider complete first-order theories of modules over the ring of continuous semi-algebraic functions X→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X\to R}$$\end{document} definable with parameters in R. As a tool we introduce -piecewise vector bundles on X and show that the category of piecewise vector bundles on X is equivalent to the category of syzygies of finitely generated submodules of free modules. We give an explicit method to determine the Baur–Monk invariants of free modules in terms of pre-piecewise vector bundles. When R is a recursive real closed field this yields the decidability of the theory of free modules. Where it makes sense, we address the same questions for continuous definable functions in o-minimal expansions of a real closed field. From the free module case we are able to deduce generalisations of some results to arbitrary modules over the ring. We present a geometrically motivated quantifier elimination result down to the level of positive primitive formulae with a certain block decomposition of the matrix of coefficients.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Limit computable integer parts.Paola D’Aquino, Julia Knight & Karen Lange - 2011 - Archive for Mathematical Logic 50 (7-8):681-695.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
A definable E 0 class containing no definable elements.Vladimir Kanovei & Vassily Lyubetsky - 2015 - Archive for Mathematical Logic 54 (5-6):711-723.

Analytics

Added to PP
2015-09-03

Downloads
20 (#1,036,437)

6 months
10 (#399,629)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Real closed rings II. model theory.Gregory Cherlin & Max A. Dickmann - 1983 - Annals of Pure and Applied Logic 25 (3):213-231.
T-Convexity and Tame Extensions.Lou van den Dries & Adam H. Lewenberg - 1995 - Journal of Symbolic Logic 60 (1):74 - 102.
Direct product decomposition of theories of modules.Steven Garavaglia - 1979 - Journal of Symbolic Logic 44 (1):77-88.
Boolean products of real closed valuation rings and fields.Jorge I. Guier - 2001 - Annals of Pure and Applied Logic 112 (2-3):119-150.
On the elementary theory of Banach algebras.Angus Macintyre - 1971 - Annals of Mathematical Logic 3 (3):239.

Add more references