Abstract
In recent years, many people writing on set theory have invoked the notion of an indefinitely extensible concept. The notion, it is usually claimed, plays an important role in solving the paradoxes of absolute infinity. It is not clear, however, how the notion should be formulated in a coherent way, since it appears to run into a number of problems concerning, for example, unrestricted quantification. In fact, the notion makes perfectly good sense if one endorses a dialetheic solution to the paradoxes. It then morphs from a supposed solution to the paradoxes into a diagnosis of their structure. In this paper I show how