Abstract
The paper deals with the problem of axiomatizing a system T1 of discrete tense logic, where one thinks of time as the set Z of all the integers together with the operations +1 ("immediate successor") and-1 ("immediate predecessor"). T1 is like the Segerberg-Sundholm system WI in working with so-called infinitary inference ruldes; on the other hand, it differs from W I with respect to (i) proof-theoretical setting, (ii) presence of past tense operators and a "now" operator, and, most importantly, with respect to (iii) the presence in T1 of so-called systematic frame constants, which are meant to hold at exactly one point in a temporal structure and to enable us to express the irreflexivity of such structures. Those frame constants will be seen to play a paramount role in our axiomatization of T1