Moral Association Graph: A Cognitive Model for Automated Moral Inference

Topics in Cognitive Science 17 (1):120-138 (2025)
  Copy   BIBTEX

Abstract

Automated moral inference is an emerging topic of critical importance in artificial intelligence. The contemporary approach typically relies on language models to infer moral relevance or moral properties of a concept. This approach demands complex parameterization and costly computation, and it tends to disconnect with existing psychological accounts of moralization. We present a simple cognitive model for moral inference, Moral Association Graph (MAG), inspired by psychological work on moralization. Our model builds on word association network for inferring moral relevance and draws on rich psychological data. We demonstrate that MAG performs competitively to state-of-the-art language models when evaluated against a comprehensive set of data for automated inference of moral norms and moral judgment of concepts, and in-context moral inference. We also show that our model yields interpretable outputs and is applicable to informing short-term moral change.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2024-11-30

Downloads
9 (#1,600,339)

6 months
9 (#445,453)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations