Abstract
In a manuscript which is being studied here for the first time, al-Samaw'al quotes a paragraph from al-Bīrūnī which shows that the latter knew not only of Brahmagupta's method of quadratic interpolation, but also of another Indian method. Al-Samaw'al examines these methods, as well as linear interpolation, compares them, and evaluates their respective results. He also tries to improve them. In this article the author shows that al-Bīrūnī had used four methods of interpolation, two of which were of Indian origin; and that al-Samaw'al explicitly introduced a new way of evaluating these different methods. He also throws light on the active movement of research on numerical methods that constitutes the background to al-Bīrūmī's and al-Samaw'al's work, and uses modern means to evaluate the different methods and to justify the mathematicians' choices. The author has edited and translated al-Samaw'al's text in order to make it available to historians of Arabic and Indian mathematics. This allows them to follow the history and the mathematical arguments, and deepens our understanding of the importance to the development of mathematics of certain astronomical work. It also highlights the contribution of Indian mathematicians to the development of Arabic mathematics. Dans un texte manuscrit jamais examiné auparavant, al-Samaw'al cite un paragraphe d'un écrit d'al-Bīrīnī qui montre bien que ce dernier connaissait non seulement la méthode d'interpolation quadratique de Brahmagupta, mais également une autre methode indienne. Al-Samaw'al éetudie ces méthodes ainsi que l'interpolation linéaire, les compare les unes aux autres et par conséquent s'interroge sur leurs performances respectives afin d'opter pour la meilleure, et tente de les perfectionner. Dans cet article, l'auteur montre qu'al-Bīrūnī disposait de quatre méthodes d'interpolation, dont deux sont d'origine indienne, et qu'al-Samaw'al a introduit explicitement une nouvelle interrogation pour juger de la performance des différentes méthodes; il restitue les études d'al- Bī;rūnī et d'al-Samaw'al dans le mouvement actif de recherche sur les méthodes numériques, et reprend avec des moyens modernes la comparaison entre les diverses méthodes pour comprendre les choix des différents mathématiciens. L'auteur établit et traduit le texte d'al-Samaw'al afin de le rendre accessible aux historiens des mathématiques arabes et indiennes, et pour permettre aux lecteurs de suivre l'exposé' historique et mathématique qui vise, au-delà de ces résultats, à mieux connaître l'apport de certaines recherches en astronomie au développement des mathématiques, et d'autre part, la contribution des mathématiciens de l'Inde à l'histoire des mathématiques arabes.