Abstract
This article argues that time-asymmetric processes in spacetime are enantiomorphs. Subsequently, the Kantian puzzle concerning enantiomorphs in space is reviewed to introduce a number of positions concerning enantiomorphy, and to arrive at a dilemma: one must either reject that orientations of enantiomorphs are determinate, or furnish space or objects with orientation. The discussion on space is then used to derive two problems in the debate on the direction of time. First, it is shown that certain kinds of reductionism about the direction of time are at variance with the claim that orientation of enantiomorphic objects is intrinsic. Second, it is argued that reductive explanations of time-asymmetric processes presuppose that enantiomorphic processes do not have determinate orientation.