Abstract
The paper discusses regularisation of dualities. A given duality between (concrete) categories, e.g. a variety of algebras and a category of representation spaces, is lifted to a duality between the respective categories of semilattice representations in the category of algebras and the category of spaces. In particular, this gives duality for the regularisation of an irregular variety that has a duality. If the type of the variety includes constants, then the regularisation depends critically on the location or absence of constants within the defining identities. The role of schizophrenic objects is discussed, and a number of applications are given. Among these applications are different forms of regularisation of Priestley, Stone and Pontryagin dualities.