Type I error rates are not usually inflated

Journal of Trial and Error 4 (2):46-71 (2024)
  Copy   BIBTEX

Abstract

The inflation of Type I error rates is thought to be one of the causes of the replication crisis. Questionable research practices such as p-hacking are thought to inflate Type I error rates above their nominal level, leading to unexpectedly high levels of false positives in the literature and, consequently, unexpectedly low replication rates. In this article, I offer an alternative view. I argue that questionable and other research practices do not usually inflate relevant Type I error rates. I begin by introducing the concept of Type I error rates and distinguishing between statistical errors and theoretical errors. I then illustrate my argument with respect to model misspecification, multiple testing, selective inference, forking paths, exploratory analyses, p-hacking, optional stopping, double dipping, and HARKing. In each case, I demonstrate that relevant Type I error rates are not usually inflated above their nominal level, and in the rare cases that they are, the inflation is easily identified and resolved. I conclude that the replication crisis may be explained, at least in part, by researchers’ misinterpretation of statistical errors and their underestimation of theoretical errors.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2023-11-21

Downloads
1,125 (#17,034)

6 months
271 (#8,717)

Historical graph of downloads
How can I increase my downloads?