Abstract
The PIWI-interacting RNA pathway, one of the major eukaryotic small RNA silencing pathways, is a genome surveillance system that silences selfish genes in animal gonads. piRNAs guide PIWI protein to target genes through Watson–Crick RNA–RNA base-parings. Loss of piRNA function causes genome instability, inducing failure in gametogenesis and infertility. Studies using fruit flies and mice as key experimental models have resulted in tremendous progress in understanding the mechanism underlying the piRNA pathway. Recent work using cultured silkworm germline cells has also expanded our knowledge of piRNA biogenesis in particular, since these silkworm cells are the only cells of germline origin that can be cultured. In this review, we describe elucidation of the piRNA pathway using cultured silkworm cells as an experimental model by focusing on recent work in biochemistry and structural biology. Earlier studies that made important contributions to the field are also described. PIWI-interacting RNAs are germline-enriched small RNAs that silence transposons to maintain genome integrity. Recently, cultured silkworm germline cells such as BmN4 made great contributions to understand the mechanism underlying piRNA biogenesis in particular. In this review, we highlight the recent progress in biochemical and structural biology.