Abstract
Accelerated computing leverages specialized hardware and software techniques to optimize the performance of computationally intensive tasks, offering significant speed-ups in scientific, engineering, and data-driven fields. This paper presents a comprehensive study examining the role of accelerated computing in enhancing processing capabilities and reducing execution times in diverse applications. Using a custom-designed experimental framework, we evaluated different methodologies for parallelization, GPU acceleration, and CPU-GPU coordination. The aim was to assess how various factors, such as data size, computational complexity, and task concurrency, impact processing efficiency. Our findings reveal that implementing accelerated computing can achieve substantial improvements, often reducing computation times by more than 60% compared to traditional sequential methods. This paper details the experimental setup, including algorithm selection and parallelization techniques, and discusses the role of memory bandwidth and latency in achieving optimal performance. Based on the analysis, we propose a streamlined methodology to guide the deployment of accelerated computing frameworks in various industries. Concluding with a discussion on future directions, we highlight potential advancements in hardware architectures and software optimizations that could further augment computational efficiency and scalability in accelerated computing.