Quasi-Set-Theoretical Foundations of Statistical Mechanics: A Research Program [Book Review]

Foundations of Physics 30 (1):101-120 (2000)
  Copy   BIBTEX

Abstract

Quasi-set theory provides us a mathematical background for dealing with collections of indistinguishable elementary particles. In this paper, we show how to obtain the usual statistics (Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac) into the scope of quasi-set theory. We also show that, in order to derive Maxwell–Boltzmann statistics, it is not necessary to assume that the particles are distinguishable or individuals. In other words, Maxwell–Boltzmann statistics is possible even in an ensamble of indistinguishable particles, at least from the theoretical point of view. The main goal of this paper is to provide the mathematical grounds of a quasi-set theoretical framework for statistical mechanics

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,063

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-11-22

Downloads
115 (#185,125)

6 months
4 (#1,232,162)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Quantum Mechanics: An Empiricist View.Paul Teller & Bas C. van Fraassen - 1995 - Philosophical Review 104 (3):457.
On a quasi-set theory.Décio Krause - 1992 - Notre Dame Journal of Formal Logic 33 (3):402--11.
Axioms for collections of indistinguishable objects.Décio Krause - 1996 - Logique Et Analyse 153 (154):69-93.

Add more references