Mammalian Value Systems

Arxiv Preprint Arxiv:1607.08289 (2016)
  Copy   BIBTEX

Abstract

Characterizing human values is a topic deeply interwoven with the sciences, humanities, political philosophy, art, and many other human endeavors. In recent years, a number of thinkers have argued that accelerating trends in computer science, cognitive science, and related disciplines foreshadow the creation of intelligent machines which meet and ultimately surpass the cognitive abilities of human beings, thereby entangling an understanding of human values with future technological development. Contemporary research accomplishments suggest increasingly sophisticated AI systems becoming widespread and responsible for managing many aspects of the modern world, from preemptively planning users’ travel schedules and logistics, to fully autonomous vehicles, to domestic robots assisting in daily living. The extrapolation of these trends has been most forcefully described in the context of a hypothetical “intelligence explosion,” in which the capabilities of an intelligent software agent would rapidly increase due to the presence of feedback loops unavailable to biological organisms. The possibility of superintelligent agents, or simply the widespread deployment of sophisticated, autonomous AI systems, highlights an important theoretical problem: the need to separate the cognitive and rational capacities of an agent from the fundamental goal structure, or value system, which constrains and guides the agent’s actions. The “value alignment problem” is to specify a goal structure for autonomous agents compatible with human values. In this brief article, we suggest that ideas from affective neuroscience and related disciplines aimed at characterizing neurological and behavioral universals in the mammalian kingdom provide important conceptual foundations relevant to describing human values. We argue that the notion of “mammalian value systems” points to a potential avenue for fundamental research in AI safety and AI ethics.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 103,634

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2017-07-01

Downloads
77 (#287,758)

6 months
9 (#409,698)

Historical graph of downloads
How can I increase my downloads?