Reverse mathematics and order theoretic fixed point theorems

Archive for Mathematical Logic 56 (3-4):385-396 (2017)
  Copy   BIBTEX

Abstract

The theory of countable partially ordered sets is developed within a weak subsystem of second order arithmetic. We within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document}. Then we within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give proofs of Knaster–Tarski fixed point theorem, Tarski–Kantorovitch fixed point theorem, Bourbaki–Witt fixed point theorem, and Abian–Brown maximal fixed point theorem for countable lattices or posets. We also give Reverse Mathematics results of the fixed point theory of countable posets; Abian–Brown least fixed point theorem, Davis’ converse for countable lattices, Markowski’s converse for countable posets, and arithmetical comprehension axiom are pairwise equivalent over RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document}. Here the converses state that some fixed point properties characterize the completeness of the underlying spaces.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.

Analytics

Added to PP
2017-11-06

Downloads
11 (#1,421,067)

6 months
5 (#1,047,105)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Structure of semisimple rings in reverse and computable mathematics.Huishan Wu - 2023 - Archive for Mathematical Logic 62 (7):1083-1100.

Add more citations

References found in this work

Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
Lattice Theory.Garrett Birkhoff - 1940 - Journal of Symbolic Logic 5 (4):155-157.
Fixed point theory in weak second-order arithmetic.Naoki Shioji & Kazuyuki Tanaka - 1990 - Annals of Pure and Applied Logic 47 (2):167-188.

View all 6 references / Add more references