Moore problems in full dynamic doxastic logic
Abstract
Dynamic doxastic logic (DDL) is the modal logic of belief change. In basic DDL a modal operator [* ϕ ] carries the informal meaning "after the agent has revised his beliefs by ϕ " or "after the agent has accepted the information that ϕ "; it is assumed that the arguments of the star operator * are pure Boolean formulae. That assumption is discarded in full DDL where any pure doxastic formula may be an argument. As noted by other authors, a straight-forward extension of the theory from basic DDL to full DDL invites problems of the kind first discussed by G. E. Moore. In this paper it is argued that a way to escape those problems is to redefine revision in a way that seems appropriate for this semantically richer context. The paper deals only with the one-agent case, but the approach can be extended to the case of multiple agents.