The Art of Causal Conjecture

MIT Press (1996)
  Copy   BIBTEX

Abstract

THE ART OF CAUSAL CONJECTURE Glenn Shafer Table of Contents Chapter 1. Introduction...................................................................................................1 1.1. Probability Trees..........................................................................................3 1.2. Many Observers, Many Stances, Many Natures..........................................8 1.3. Causal Relations as Relations in Nature’s Tree...........................................9 1.4. Evidence.......................................................................................................13 1.5. Measuring the Average Effect of a Cause....................................................17 1.6. Causal Diagrams..........................................................................................20 1.7. Humean Events............................................................................................23 1.8. Three Levels of Causal Language................................................................27 1.9. An Outline of the Book................................................................................27 Chapter 2. Event Trees....................................................................................................31 2.1. Situations and Events...................................................................................32 2.2. The Ordering of Situations and Moivrean Events.......................................35 2.3. Cuts..............................................................................................................39 2.4. Humean Events............................................................................................43 2.5. Moivrean Variables......................................................................................49 2.6. Humean Variables........................................................................................53 2.7. Event Trees for Stochastic Processes...........................................................54 2.8. Timing in Event Trees.................................................................................56 2.9. Intersecting Event Trees...............................................................................60 2.10. Notes on the Literature...............................................................................61 Chapter 3. Probability Trees...........................................................................................63 3.1. Some Types of Probability Trees.................................................................64 ii 3.2. Axioms for the Probabilities of Moivrean Events.......................................68 3.3. Zero Probabilities.........................................................................................70 3.4. A Sample-Space Analysis of the Event-Tree Axioms.................................72 3.5. Probabilities and Expected Values for Variables.........................................74 3.6. Martingales..................................................................................................79 3.7. The Expectation of a Variable in a Cut........................................................83 3.8. Conditional Expected Value and Conditional Expectation.........................87 Chapter 4. The Meaning of Probability...........................................................................91 4.1. The Interpretation of Expected Value..........................................................92 4.2. The Interpretation of Expectation................................................................95 4.3. The Long Run..............................................................................................98 4.4. Changes in Belief.........................................................................................101 4.5. The Empirical Validation of Probability......................................................106 4.6. The Diversity of Uses of Probability...........................................................108 4.7. Notes on the Literature.................................................................................110 Chapter 5. Independent Events.......................................................................................113 5.1. Independence...............................................................................................114 5.2. Weak Independence.....................................................................................118 5.3. The Principle of the Common Cause...........................................................121 5.4. Conditional Independence............................................................................128 5.5. Notes on the Literature.................................................................................133 Chapter 6. Events Tracking Events.................................................................................135 6.1. Tracking.......................................................................................................137 6.2. Tracking and Conditional Independence.....................................................142 6.3. Stochastic Subsequence...............................................................................143 6.4. Singular Diagrams for Stochastic Subsequence...........................................147 6.5. Conjunctive and Interactive Forks...............................................................149 Chapter 7. Events as Signs of Events..............................................................................153 iii 7.1. Sign..............................................................................................................154 7.2. Weak Sign....................................................................................................159 7.3. The Ethics of Causal Talk............................................................................160 7.4. Screening Off...............................................................................................162 Chapter 8. Independent Variables...................................................................................167 8.1. Unconditional Independence........................................................................170 8.2. Conditional Independence............................................................................175 8.3. Independence for Partitions.........................................................................177 8.4. Independence for Families of Variables......................................................182 8.5. Individual Properties of the Independence Relations...................................186 Chapter 9. Variables Tracking Variables........................................................................189 9.1. Tracking and Conditional Independence: A Summary...............................190 9.2. Strong Tracking............................................................................................192 9.3. Strong Tracking and Conditional Independence..........................................198 9.4. Stochastic Subsequence...............................................................................201 9.5. Functional Dependence................................................................................203 9.6. Tracking in Mean.........................................................................................204 9.7. Linear Tracking............................................................................................207 9.8. Tracking by Partitions..................................................................................210 9.9. Tracking by Families of Variables...............................................................212 Chapter 10. Variables as Signs of Variables...................................................................215 10.1. Sign............................................................................................................219 10.2. Linear Sign.................................................................................................222 10.3. Scored Sign................................................................................................225 10.4. Families of Variables.................................................................................227 Chapter 11. AnTheory of Event Trees.............................................................229 11.1. Event Trees as Sets of Sets........................................................................230 11.2. Event Trees as Partially Ordered Sets........................................................232 iv 11.3. Regular Event Trees...................................................................................240 11.4. The Resolution of Moivrean Variables......................................................244 11.5. Humean Events and Variables...................................................................246 Chapter 12. Martingale Trees..........................................................................................247 12.1. Examples of Decision Trees......................................................................249 12.2. The Meaning of Probability in a Decision Tree.........................................253 12.3. Martingales................................................................................................257 12.4. The Structure of Martingale Trees.............................................................261 12.5. Probability and Causality...........................................................................265 12.6. Lower and Upper Probability.....................................................................269 12.7. The Law of Large Numbers.......................................................................272 12.8. Notes on the Literature...............................................................................274 Chapter 13. Refining.......................................................................................................275 13.1. Examples of Refinement............................................................................277 13.2. A Constructive Definition of Finite Refinement.......................................281 13.3. Axioms for Refinement..............................................................................282 13.4. Lifting Moivrean Events and Variables.....................................................288 13.5. Refining Martingale Trees.........................................................................288 13.6. Grounding..................................................................................................294 Chapter 14. Principles of Causal Conjecture..................................................................299 14.1. The Diversity of Causal Explanation.........................................................302 14.2. The Mean Effect of the Happening of a Moivrean Event..........................305 14.3. The Effect of a Humean Variable..............................................................311 14.4. Attribution and Generality.........................................................................316 14.5. The Statistical Measurement of the Effect of a Cause...............................319 14.6. Measurement by Experiment.....................................................................320 14.7. Using Our Knowledge of How Things Work............................................322 v 14.8. Sampling Error...........................................................................................329 14.9. The Sampling Frame..................................................................................329 14.10. Notes on the Literature.............................................................................330 Chapter 15. Causal Models.............................................................................................331 15.1. The Causal Interpretation of Statistical Prediction....................................333 15.2. Generalizing to a Family of Exogenous Variables....................................337 15.3 Some Joint Causal Diagrams......................................................................339 15.4. Causal Path Diagrams................................................................................342 15.5. Causal Relevance Diagrams.......................................................................346 15.6. The Meaning of Latent Variables..............................................................352 15.7. Notes on the Literature...............................................................................357 Chapter 16. Representing Probability Trees...................................................................359 16.1. Three Graphical Representations...............................................................361 16.2. Skeletal Simplifications.............................................................................368 16.3. Martingale Trees in Type Theory...............................................................371 Appendix A. Huygens’s Probability Trees.....................................................................379 Huygens’s Manuscript in Translation..................................................................380 Appendix B. Some Elements of Graph Theory..............................................................385 B1. Undirected Graphs........................................................................................385 B2. Directed Graphs............................................................................................386 Appendix C. Some Elements of Order Theory...............................................................393 C1. Partial and Quasi Orderings.........................................................................393 C2. Singular and Joint Diagrams for Binary Relations.......................................394 C3. Lattices.........................................................................................................395 C4. The Lattice of Partitions of a Set..................................................................396 Appendix D. The Sample-Space Framework for Probability.........................................399 D1. Probability Measures....................................................................................399 D2. Variables......................................................................................................400 vi D3. Families of Variables...................................................................................401 D4. Expected Value............................................................................................402 D5. The Law of Large Numbers.........................................................................405 D6. Conditional Probability................................................................................406 D7. Conditional Expected Value........................................................................407 Appendix E. Prediction in Probability Spaces................................................................409 E1. Conditional Distribution...............................................................................411 E2. Regression on a Single Variable...................................................................412 E3. Regression on a Partition or a Family of Variables......................................415 E4. Linear Regression on a Single Variable.......................................................418 E5. Linear Regression on a Family of Variables................................................422 Appendix F. Sample-Space Concepts of Independence.................................................425 F1. Overview.......................................................................................................426 F2. Independence Proper.....................................................................................432 F3. Unpredictability in Mean..............................................................................434 F4. Simple Uncorrelatedness..............................................................................437 F5. Mixed Uncorrelatedness...............................................................................438 F6. Partial Uncorrelatedness...............................................................................440 F7. Independence for Partitions..........................................................................442 F8. Independence for Families of Variables.......................................................445 F9. The Basic Role of Uncorrelatedness.............................................................448 F10. Dawid’s Axioms.........................................................................................449 Appendix G. Prediction Diagrams..................................................................................453 G1. Path Diagrams..............................................................................................454 G2. Generalized Path Diagrams..........................................................................462 G3. Relevance Diagrams.....................................................................................466 G4. Bubbled Relevance Diagrams......................................................................475 Appendix H. Abstract Stochastic Processes...................................................................479 vii H1. Probability Conditionals and Probability Distributions...............................477 H2. Abstract Stochastic Processes......................................................................479 H3. Embedding Variables and Processes in a Sample Space.............................480 References........................................................................................................................491.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,401

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2017-05-19

Downloads
25 (#921,682)

6 months
10 (#281,857)

Historical graph of downloads
How can I increase my downloads?