The Basic Reproduction Number for Cellular SIR Networks

Acta Biotheoretica 62 (3):417-427 (2014)
  Copy   BIBTEX

Abstract

The basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} is the average number of new infections produced by a typical infective individual in the early stage of an infectious disease, following the introduction of few infective individuals in a completely susceptible population. If R0 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document} the infection can invade the host population and persist. This threshold quantity is well studied for SIR compartmental or mean field models based on ordinary differential equations, and a general method for its computation has been proposed by van den Driessche and Watmough. We concentrate here on SIR epidemiological models that take into account the contact network N underlying the transmission of the disease. In this context, it is generally admitted that R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} can be approximated by the average number R2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{2,3}$$\end{document} of infective individuals of generation three produced by an infective of generation two. We give here a simple analytic formula of R2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{2,3}$$\end{document} for SIR cellular networks. Simulations on two-dimensional cellular networks with von Neumann and Moore neighborhoods show that R2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{2,3}$$\end{document} can be used to capture a threshold phenomenon related the dynamics of SIR cellular network and confirm the good quality of the simple approach proposed recently by Aparicio and Pascual for the particular case of Moore neighborhood.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,676

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.

Analytics

Added to PP
2015-01-31

Downloads
14 (#1,271,150)

6 months
3 (#1,470,969)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references