Abstract
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system that relies on generative models to predict the structure of sensory information. Such a view resonates with a body of work in machine learning that has explored the problem-solving capabilities of hierarchically-organized, multi-layer (i.e., deep) neural networks, many of which acquire and deploy generative models of their training data. The present chapter explores the extent to which the ostensible convergence on a common neurocomputational architecture (centred on predictive processing schemes, hierarchical organization, and generative models) might provide inroads into the problem of digital immortality. In contrast to approaches that seek to recapitulate the connectomic microstructure of the human brain, the present chapter advocates an approach that is rooted in the use of machine learning algorithms. The claim is that a future form of deep learning system could be used to acquire generative models of a given individual or (alternatively) the sensory data that is processed by the brain of a given individual during the course of their biological life. The differences between these two forms of digital immortality are explored, as are some of the options for digital resurrection.