Expressing and capturing the primitive recursive functions
Abstract
The last Episode wasn’t about logic or formal theories at all: it was about common-or-garden arithmetic and the informal notion of computability. We noted that addition can be defined in terms of repeated applications of the successor function. Multiplication can be defined in terms of repeated applications of addition. The exponential and factorial functions can be defined, in different ways, in terms of repeated applications of multiplication. There’s already a pattern emerging here! The main task in the last Episode was to get clear about this pattern. So first we said more about the idea of defining one function in terms of repeated applications of another function. Tidied up, that becomes the idea of defining a function by primitive recursion (Defn. 27).