Two weak arithmetics

Abstract

Our last big theorem – Theorem 6 – tells us that if a theory meets certain conditions, then it must be negation incomplete. And we made some initial arm-waving remarks to the effect that it seems plausible that we should want theories which meet those conditions. Later, we announced that there actually is a consistent weak arithmetic with a first-order logic which meets the conditions (in which case, stronger arithmetics will also meet the conditions); but we didn’t say anything about what such a weak theory really looks like. In fact, we haven’t looked at any detailed theory of arithmetic yet! It is high time, then, that we stop operating at the extreme level of abstraction of Episodes 1 and 2, and start getting our hands dirty. This Episode introduces a couple of weak arithmetics, before we tackle the canonical first-order arithmetic PA in the following instalment. By all means skip fairly lightly over some of the more boring proof details! But it is certainly worth getting just a flavour of how these two simple formal theories work

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,423

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
Dynamic ordinal analysis.Arnold Beckmann - 2003 - Archive for Mathematical Logic 42 (4):303-334.
Inconsistent models for relevant arithmetics.Robert Meyer & Chris Mortensen - 1984 - Journal of Symbolic Logic 49 (3):917-929.
The strength of extensionality I—weak weak set theories with infinity.Kentaro Sato - 2009 - Annals of Pure and Applied Logic 157 (2-3):234-268.
Towards metamathematics of weak arithmetics over fuzzy logic.Petr Hájek - 2011 - Logic Journal of the IGPL 19 (3):467-475.
Corrigendum to“Weak Arithmetics and Kripke Models”.Morteza Moniri - 2004 - Mathematical Logic Quarterly 50 (6):637-638.

Analytics

Added to PP
2009-11-21

Downloads
8 (#1,587,259)

6 months
8 (#610,780)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Peter Eldridge-Smith
Australian National University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references