Predicting Organization Performance Changes: A Sequential Data-Based Framework

Frontiers in Psychology 13 (2022)
  Copy   BIBTEX

Abstract

The business environment is increasingly uncertain due to the rapid development of disruptive information technologies, the changing global economy, and the COVID-19 pandemic. This brings great uncertainties to investors to predict the performance changes and risks of companies. This research proposes a sequential data-based framework that aggregates data from multiple sources including both structured and unstructured data to predict the performance changes. It leverages data generated from the early risk warning system in China stock market to measure and predict organization performance changes based on the risk warning status changes of public companies. Different from the models in existing literature that focus on the prediction of risk warning of companies, our framework predicts a portfolio of organization performance changes, including business decline and recovery, thus helping investors to not only predict public company risks, but also discover investment opportunities. By incorporating sequential data, our framework achieves 92.3% macro-F1 value on real-world data from listed companies in China, outperforming other static models.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,561

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Company ESG performance and institutional investor ownership preferences.Li Wei & Wu Chengshu - 2024 - Business Ethics, the Environment and Responsibility 33 (3):287-307.
Do investors care about corporate environmental responsibility engagement.Khaldoon Albitar, Siming Liu, Khaled Hussainey & Gaoke Liao - 2023 - International Journal of Business Governance and Ethics 17 (4):393-415.

Analytics

Added to PP
2022-05-20

Downloads
11 (#1,406,132)

6 months
5 (#1,002,523)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references