Abstract
The purpose of this article is to examine aspects of the development of the concept and theory of computability through the theory of recursive functions. Following a brief introduction, Section 2 is devoted to the presuppositions of computability. It focuses on certain concepts, beliefs and theorems necessary for a general property of computability to be formulated and developed into a mathematical theory. The following two sections concern situations in which the presuppositions were realized and the theory of computability was developed. It is suggested in Section 3 that a central item was the problem of generalizing Gödel's incompleteness theorem. It is shown that this involved both the characterization of recursiveness and the attempt to clarify and formulate the notion of an effective process as it relates to the syntax of deductive systems. Section 4 concerns the decision problems which grew from the Hilbert program. Section 5 is devoted to the development of an informal' technique in the theory of computability often called ?argument by Church's thesis?