Integrating reinforcement learning, bidding and genetic algorithms

Abstract

This paper presents a GA-based multi-agent reinforce- ment learning bidding approach (GMARLB) for perform- ing multi-agent reinforcement learning. GMARLB inte- grates reinforcement learning, bidding and genetic algo- rithms. The general idea of our multi-agent systems is as follows: There are a number of individual agents in a team, each agent of the team has two modules: Q module and CQ module. Each agent can select actions to be performed at each step, which are done by the Q module. While the CQ module determines at each step whether the agent should continue or relinquish control. Once an agent relinquishes its control, a new agent is selected by bidding algorithms. We applied GA-based GMARLB to the Backgammon game. The experimental results show GMARLB can achieve a su- perior level of performance in game-playing, outperforming PubEval, while the system uses zero built-in knowledge.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,030

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

強化学習エージェントへの階層化意志決定法の導入―追跡問題を例に―.輿石 尚宏 謙吾 片山 - 2004 - Transactions of the Japanese Society for Artificial Intelligence 19:279-291.
Profit Sharing 法における強化関数に関する一考察.Tatsumi Shoji Uemura Wataru - 2004 - Transactions of the Japanese Society for Artificial Intelligence 19:197-203.

Analytics

Added to PP
2009-06-13

Downloads
37 (#678,275)

6 months
37 (#114,510)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations