Π11‐Martin‐Löf randomness and Π11‐Solovay completeness

Mathematical Logic Quarterly 65 (3):265-279 (2019)
  Copy   BIBTEX

Abstract

Developing an analogue of Solovay reducibility in the higher recursion setting, we show that results from the classical computably enumerable case can be extended to the new context.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,369

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The difference between optimality and universality.Kenshi Miyabe - 2012 - Logic Journal of the IGPL 20 (1):222-234.
Computably enumerable sets below random sets.André Nies - 2012 - Annals of Pure and Applied Logic 163 (11):1596-1610.
Continuous higher randomness.Laurent Bienvenu, Noam Greenberg & Benoit Monin - 2017 - Journal of Mathematical Logic 17 (1):1750004.
The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
Arithmetical Measure.Sebastiaan A. Terwijn & Leen Torenvliet - 1998 - Mathematical Logic Quarterly 44 (2):277-286.
Algorithmic randomness over general spaces.Kenshi Miyabe - 2014 - Mathematical Logic Quarterly 60 (3):184-204.
Minimal weak truth table degrees and computably enumerable Turing degrees.R. G. Downey - 2020 - Providence, RI: American Mathematical Society. Edited by Keng Meng Ng & Reed Solomon.
Degrees of Monotone Complexity.William C. Calhoun - 2006 - Journal of Symbolic Logic 71 (4):1327 - 1341.
On the Π1 1 -separation principle.Antonio Montalbán - 2008 - Mathematical Logic Quarterly 54 (6):563-578.

Analytics

Added to PP
2019-10-18

Downloads
10 (#1,477,106)

6 months
3 (#1,481,767)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.
Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.

Add more references