Grasping the Conceptual Difference Between János Bolyai and Lobachevskii’s Notions of Non-Euclidean Parallelism

Archive for History of Exact Sciences 63 (5):537-552 (2009)
  Copy   BIBTEX

Abstract

The paper examines the difference between János Bolyai’s and Lobachevskii’s notion of non-Euclidean parallelism. The examination starts with the summary of a widespread view of historians of mathematics on János Bolyai’s notion of non-Euclidean parallelism used in the first paragraph of his Appendix. After this a novel position of the location and meaning of Bolyai’s term “parallela” in his Appendix is put forward. After that János Bolyai’s Hungarian manuscript, the Commentary on Lobachevskii’s Geometrische Untersuchungen is elaborated in order to see how Bolyai and Lobachevskii’s notions of parallelism differ. The careful examination of the Commentary reveals a seeming incoherence of Bolyai’s translation, and finally the explanation of this incoherence offered by the Received View and that of the novel position will be compared and assessed. L’article examine la différence entre la notion du parallélisme non-Euclidean de János Bolyai et celle de Lobachevskii. Tout d’abord le travail s’occupe de l’opinion répendue parmi les historiens de géometrie (le « Received View » ), selon laquelle János Bolyai précise la notion du parallélisme non-Euclidean dans le premier paragraph de l’Appendix. Ensuite une pointe de vue toute neuve sera présentée concernant la place et le sens du terminus technicus,,paralella” de Bolyai dans l’Appendix. Enfin on va analyser les Commentaires (un manuscrit hongrois) de János Bolyai sur le livre Geometrische Untersuchungen de Lobachevskii àfin de voir jusqu’à quel point la notion de parallelisme de Bolyai se diffère de celle de Lobachevskii. L’analyse bien fondue des Commentaires va nous relever un apparent incohérence de la traduction de Bolyai. On examine et on compare l’opinion répendue dans le vaste public avec la nouvelle interpretation de l’Appendix, et on discute les explications probables de cet incohérence.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,561

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2020-02-03

Downloads
22 (#947,658)

6 months
3 (#1,467,341)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

János Tanács
Technical University of Budapest

References found in this work

Mathematics, the Loss of Certainty.Morris Kline - 1981 - Critica 13 (39):87-91.
Philosophy of Geometry from Riemann to Poincaré.Roberto Torretti - 1978 - Revue de Métaphysique et de Morale 88 (4):565-571.

Add more references