Fredholm determinants and the mKdV/sinh-Gordon hierarchies

Abstract

For a particular class of integral operators $K$ we show that the quantity \[\ph:=\log \det -\log \det \] satisfies both the integrated mKdV hierarchy and the sinh-Gordon hierarchy. This proves a conjecture of Zamolodchikov.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,518

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-06-17

Downloads
5 (#1,757,746)

6 months
4 (#1,279,871)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references