Abstract
Scaling level-spacing distribution functions in the ``bulk of the spectrum'' in random matrix models of $N\times N$ hermitian matrices and then going to the limit $N\to\infty$, leads to the Fredholm determinant of the sine kernel $\sin\pi/\pi $. Similarly a double scaling limit at the ``edge of the spectrum'' leads to the Airy kernel $[{\rm Ai} {\rm Ai}' -{\rm Ai}' {\rm Ai}]/$. We announce analogies for this Airy kernel of the following properties of the sine kernel: the completely integrable system of P.D.E.'s found by Jimbo, Miwa, M{\^o}ri and Sato; the expression, in the case of a single interval, of the Fredholm determinant in terms of a Painlev{\'e} transcendent; the existence of a commuting differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general $n$, of the probability that an interval contains precisely $n$ eigenvalues.