Induction and comparison
Abstract
Frege proved an important result, concerning the relation of arithmetic to second-order logic, that bears on several issues in linguistics. Frege’s Theorem illustrates the logic of relations like PRECEDES(x, y) and TALLER(x, y), while raising doubts about the idea that we understand sentences like ‘Carl is taller than Al’ in terms of abstracta like heights and numbers. Abstract paraphrase can be useful—as when we say that Carl’s height exceeds Al’s—without reflecting semantic structure. Related points apply to causal relations, and even grammatical relations like DOMINATES(x, y). Perhaps surprisingly, Frege provides the resources needed to recursively characterize labelled expressions without characterizing them as sets. His theorem may also bear on questions about the meaning and acquisition of number words.