Nelson's Negation on the Base of Weaker Versions of Intuitionistic Negation

Studia Logica 80 (2):393-430 (2005)
  Copy   BIBTEX

Abstract

Constructive logic with Nelson negation is an extension of the intuitionistic logic with a special type of negation expressing some features of constructive falsity and refutation by counterexample. In this paper we generalize this logic weakening maximally the underlying intuitionistic negation. The resulting system, called subminimal logic with Nelson negation, is studied by means of a kind of algebras called generalized N-lattices. We show that generalized N-lattices admit representation formalizing the intuitive idea of refutation by means of counterexamples giving in this way a counterexample semantics of the logic in question and some of its natural extensions. Among the extensions which are near to the intuitionistic logic are the minimal logic with Nelson negation which is an extension of the Johansson's minimal logic with Nelson negation and its in a sense dual version — the co-minimal logic with Nelson negation. Among the extensions near to the classical logic are the well known 3-valued logic of Lukasiewicz, two 12-valued logics and one 48-valued logic. Standard questions for all these logics — decidability, Kripke-style semantics, complete axiomatizability, conservativeness are studied. At the end of the paper extensions based on a new connective of self-dual conjunction and an analog of the Lukasiewicz middle value ½ have also been considered

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,619

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
72 (#287,397)

6 months
11 (#318,982)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

An algebraic approach to non-classical logics.Helena Rasiowa - 1974 - Warszawa,: PWN - Polish Scientific Publishers.
Constructible falsity.David Nelson - 1949 - Journal of Symbolic Logic 14 (1):16-26.
Aristotle's Syllogistic from the Standpoint of Modern Formal Logic.JAN LUKASIEWICZ - 1951 - Revue de Métaphysique et de Morale 57 (4):456-458.
Reasoning with logical bilattices.Ofer Arieli & Arnon Avron - 1996 - Journal of Logic, Language and Information 5 (1):25--63.

View all 19 references / Add more references