Abstract
When modeling informal proofs like that of Euclid’s Elements using a sound logical system, we go from proofs seen as somewhat unrigorous – even having gaps to be filled – to rigorous proofs. However, metalogic grounds the soundness of our logical system, and proofs in metalogic are not like formal proofs and look suspiciously like the informal proofs. This brings about what I am calling here the groundedness problem: how can we decide with certainty that our metalogical proofs are rigorous and sustain our logical system? In this paper, I will expose this problem. I will not try to solve it here.