Quantum Computing’s Classical Problem, Classical Computing’s Quantum Problem

Foundations of Physics 44 (8):819-828 (2014)
  Copy   BIBTEX

Abstract

Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some \(10^{30}\) logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,174

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2014-06-05

Downloads
103 (#206,213)

6 months
13 (#264,153)

Historical graph of downloads
How can I increase my downloads?