Sizing of a Standalone PV System with Battery Storage for a Dairy: A Case Study from Chile

Complexity 2020:1-17 (2020)
  Copy   BIBTEX

Abstract

In this paper, a stochastic simulation model for a standalone PV system sizing is replicated and extended to supply a dairy’s power demand. A detailed hourly-based simulation is conducted considering an hourly load profile and global solar radiation prediction model. The stochastic simulation model is based on a thorough statistical analysis of the solar radiation data and simulates the energy yield, the excess energy curtailed, and the state of charge of the batteries for the sizing month and the whole year, providing the designer autonomy factor values d to properly size the PV system, finding the optimum combination of installed peak power P m and battery storage capacity C L that meets the application load requirements, considering a preset reliability level at minimum cost. The model makes use of the NASA’S Surface Meteorology and Solar Energy database to obtain solar radiation data. Results show a substantial reduction of 44% in installed peak power and battery storage capacity when compared to conventional methodologies, considering three days of autonomy, and an 85% reduction considering four days. Considering the goodness of fit test results, the Wakeby distribution best represents the behavior of historical solar radiation data for the site in almost half of the months. This article seeks to contribute to the literature gap in the application of methodologies for the multicomponent power supply in the dairy industry through the use of renewable energy.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 102,007

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Renewable Hybrid Power Generation System.Shirshak Dutta, Arpita Sen, Sananda Biswas, Abhinaba Halder, Soumya Das, Pratyusha Biswas Deb & Ijarw Ijeais - 2018 - International Journal of Engineering and Information Systems (IJEAIS) 2 (2):1-5.
Renewable Energy Technologies for Microgrids.Marcelo G. Molina & Pedro E. Mercado - 2018 - In Antonio Carlos Zambroni de Souza & Miguel Castilla (eds.), Microgrids Design and Implementation. Springer Verlag. pp. 27-67.

Analytics

Added to PP
2020-12-22

Downloads
10 (#1,491,858)

6 months
5 (#985,917)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references