Abstract
Gentzen's “Untersuchungen” [1] gave a translation from natural deduction to sequent calculus with the property that normal derivations may translate into derivations with cuts. Prawitz in [8] gave a translation that instead produced cut-free derivations. It is shown that by writing all elimination rules in the manner of disjunction elimination, with an arbitrary consequence, an isomorphic translation between normal derivations and cut-free derivations is achieved. The standard elimination rules do not permit a full normal form, which explains the cuts in Gentzen's translation. Likewise, it is shown that Prawitz' translation contains an implicit process of cut elimination.