Abstract
This paper addresses how multiple individual credences on logically related issues should be aggregated into collective binary beliefs. We call this binarizing belief aggregation. It is vulnerable to dilemmas such as the discursive dilemma or the lottery paradox: proposition-wise independent aggregation can generate inconsistent or not deductively closed collective judgments. Addressing this challenge using the familiar axiomatic approach, we introduce general conditions on a binarizing belief aggregation rule, including rationality conditions on individual inputs and collective outputs, and determine which rules (if any) satisfy different combinations of these conditions. Furthermore, we analyze similarities and differences between our proofs and other related proofs in the literature and conclude that the problem of binarizing belief aggregation is a free-standing aggregation problem not reducible to judgment aggregation or probabilistic opinion pooling.