SCRD-Net: A Deep Convolutional Neural Network Model for Glaucoma Detection in Retina Tomography

Complexity 2021:1-11 (2021)
  Copy   BIBTEX

Abstract

Early and accurate diagnosis of glaucoma is critical for avoiding human vision deterioration and preventing blindness. A deep-neural-network model has been developed for the diagnosis of glaucoma based on Heidelberg retina tomography, called “Seeking Common Features and Reserving Differences Net” to make full use of the HRT data. In this work, the proposed SCRD-Net model achieved an area under the curve of 94.0%. For the two HRT image modalities, the model sensitivities were 91.2% and 78.3% at specificities of 0.85 and 0.95, respectively. These results demonstrate a significant improvement over earlier results. In addition, we visualized the network outputs to develop an interpretation of the learned mechanism for discriminating glaucoma and normal images. Thus, the SCRD-Net can be an effective diagnostic indicator of glaucoma during clinical screening. To facilitate SCRD-Net utilization by the scientific community, the code implementation will be made publicly available.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,937

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-04-11

Downloads
18 (#1,111,327)

6 months
8 (#580,966)

Historical graph of downloads
How can I increase my downloads?