Abstract
Ifκis a measurable cardinal, let us say that a measure onκis aκ-complete nonprincipal ultrafilter onκ. IfUis a measure onκ, letjUbe the canonical elementary embedding ofVinto its Ultrapower UltU. Ifxis a set, say thatUmovesxwhenjU≠x; say thatκmovesxwhen some measure onκmovesx. Recall Kunen's lemma : “Every ordinal is moved only by finitely many measurable cardinals.” Kunen's proof and Fleissner's proof are essentially nonconstructive.The following proposition can be proved by using elementary facts about iterated ultrapowers.Proposition.Let ‹Un: n ∈ ω› be a sequence of measures on a strictly increasing sequence ‹κn: n ∈ ω› of measurable cardinals. Let U = ‹ Wα: α < ω2›, where Wωm + n= Um. Then, for each θ inUltU,if E is the support of θ inUltU,then, for all m ∈ ω, Ummoves θ iff E ∩ [ωm, ω)≠ ∅.