Abstract
A semantics may be compositional and yet partial, in the sense that not all well-formed expressions are assigned meanings by it. Examples come from both natural and formal languages. When can such a semantics be extended to a total one, preserving compositionality? This sort of extension problem was formulated by Hodges, and solved there in a particular case, in which the total extension respects a precise version of the fregean dictum that the meaning of an expression is the contribution it makes to the meanings of complex phrases of which it is a part. Hodges' result presupposes the so-called Husserl property, which says roughly that synonymous expressions must have the same category. Here I solve a different version of the compositional extension problem, corresponding to another type of linguistic situation in which we only have a partial semantics, and without assuming the Husserl property. I also briefly compare Hodges' framework for grammars in terms of partial algebras with more familiar ones, going back to Montague, which use many-sorted algebras instead