Abstract
This paper begins by pointing out that the Aristotelian conception of continuity (synecheia) and the contemporary topological account share the same intuitive, proto-topological basis: the conception of a ?natural whole? or unity without joints or seams. An argument of Aristotle to the effect that what is continuous cannot be constituted of ?indivisibles? (e.g., points) is examined from a topological perspective. From that perspective, the argument fails because Aristotle does not recognize a collective as well as a distributive concept of a multiplicity of points. It is the former concept that allows contemporary topology to identify some point sets with spatial regions (in the proto-topological sense of this term). This identification, in turn, allows contemporary topology to do what Aristotle was unwilling to do: to conceive the property of continuity, as well as the properties of having measure greater than zero and having n- dimension, as emergent properties. Thus, a point set can be continuous (connected) although none of its subsets of sufficiently smaller cardinality can be. Finally, the paper discusses the manner in which a topological principle, viz., the principle that none of the singletons of points of a continuum can be open sets of that continuum, captures certain aspects of the Aristotelian proto-topological conception of the relation between points and continua. E.g., for both Aristotle and contemporary topology, points in a continuum exist simple as limits of the remainder of the continuum: their singletons have empty ?interiors? and, hence, they are not ?chunks? (topologically, regular closed set) of the continuum