Abstract
Let us recall that Raphael Robinson's Arithmetic Q is an axiom system that differs from Peano Arithmetic essentially by containing no Induction axioms [13], [18]. We will generalize the semantic-tableaux version of the Second Incompleteness Theorem almost to the level of System Q. We will prove that there exists a single rather long Π 1 sentence, valid in the standard model of the Natural Numbers and denoted as V, such that if α is any finite consistent extension of Q + V then α will be unable to prove its Semantic Tableaux consistency. The same result will also apply to axiom systems α with infinite cardinality when these infinite-sized axiom systems satisfy a minor additional constraint, called the Conventional Encoding Property. Our formalism will also imply that the semantic-tableaux version of the Second Incompleteness Theorem generalizes for the axiom system IΣ 0 , as well as for all its natural extensions. (This answers an open question raised twenty years ago by Paris and Wilkie [15].)