Abstract
The stable differentiation of cells into other cell types typically involves dramatic reorganization of cellular structures and functions. This often includes remodeling of the cell cycle and the apparatus that controls it. Here we review our understanding of the role and regulation of cell cycle control elements during cell differentiation in the yeast, Saccharomyces cerevisiae. Although the process of differentiation may be more overtly obvious in metazoan organisms, those systems are by nature more difficult to study at a mechanistic level. We consider the relatively well‐understood mechanisms by which mating‐type switching and the pheromone‐induced differentiation of gametes are coupled to the cell cycle as well as the more obscure mechanisms that govern the remodeling of the cell cycle during meiosis and filamentous growth. In some cases, the cell cycle is a primary stimulus for differentiation whereas, in other cases, the signals that promote differentiation alter the cell cycle. Thus, despite relative simplicity of these processes in yeast, the nature of the interplay between the cell cycle and differentiation is diverse. BioEssays 25:856–867, 2003. © 2003 Wiley Periodicals, Inc.