Abstract
The Axiom of Strong Condensation, first introduced by Woodin in [14], is an abstract version of the Condensation Lemma ofL. In this paper, we construct a set-sized forcing to obtain Strong Condensation forH. As an application, we show that “ZFC + Axiom of Strong Condensation +”is consistent, which answers a question in [14]. As another application, we give a partial answer to a question of Jech by proving that “ZFC + there is a supercompact cardinal + any ideal onω1which is definable overH is not precipitous” is consistent under sufficient large cardinal assumptions.