Abstract
Human resource management risks are due to the failure of employer organization to use relevant human resources reasonably and can result in tangible or intangible waste of human resources and even risks; therefore, constructing a practical early warning model of human resource management risk is extremely important for early risk prediction. The back propagation neural network is an information analysis and processing system formed by using the error back propagation algorithm to simulate the neural function and structure of the human brain, which can handle complex and changeable things that do not have an obvious linear relationship between output results and input factors, so as to find the objective connection between the two. Based on the summary and analysis of previous research works, this article expounded the research status and significance of early warning for human resource management risks, elaborated the development background, current status, and future challenges of the BP neural network, introduced the method and principle of the BP neural network’s connection weight calculation and learning training, performed the risk inducement analysis, index system establishment, and network node selection of human resource management, constructed an early warning model of human resource management risk based on the BP neural network, conducted the risk warning model training and detection based on the BP neural network, and finally carried out a simulation and its result analysis. The study results show that the early warning model of human resource management risk based on the BP network is effective, and this trained and tested BP network risk warning model can be used to conduct early warning empirical research on human resource risks to prevent human resource risks, ensure enterprise’s benign operation, and at the same time play a role in supervision and promotion of market order rectification.